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Nonlinear dynamics of semiflexible magnetic filaments in an ac magnetic field
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Flexible spontaneously magnetized filaments exist in the living world �magnetotactic bacteria� and arise in
magnetic colloids with large magnetodipolar interaction parameter. We demonstrate that these filaments pos-
sess variety of novel nonlinear phenomena in an ac magnetic field: orientation of the filament in the direction
perpendicular to the field and the development of the oscillating U-like shapes, which presumably can lead to
the formation of rings of magnetic filaments. It is found that these phenomena are determined by the devel-
opment of the localized boundary modes of the filament deformation. We have illustrated by qualitative
estimates that the phenomena found may be useful for insight into the complex pattern formation phenomena
in ensembles of magnetic particles under the action of an ac magnetic field.
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I. INTRODUCTION

Magnetic filaments obtained recently in different labora-
tories �1,2� have caused interest because of the possibility to
create artificial colloidal swimmers �3,4�, their application
for the mixing in microfluidics �5�, and other reasons. Their
theoretical description is possible on the basis of the model
of magnetic semiflexible filament elaborated recently �6�. On
this basis, when thermal fluctuations are taken into account,
the dispersion of the magnetic susceptibility of spontane-
ously magnetized filaments is considered �7�. These results
show that spontaneously magnetized filament in an ac mag-
netic field, if its frequency is high enough, should orientate
in the direction perpendicular to the field �7�. Similar behav-
ior was observed recently in the vertical ac magnetic field for
chains of microne-size Ni particles floating on the surface of
the liquid �8�. An interesting point consists in the fact that the
model �7� extended for the restoring capillary force on the
floating magnetic chain allows one to deduce the mean mag-
netic energy of the filament, which shows the characteristic
minimum in dependence on the length of the filament. This
minimum, the position of which depends on the frequency,
may correspond to the length of the chainlike aggregates of
the ferromagnetic particles floating on the surface of the liq-
uid. A key point for the application of the model of the mag-
netic semiflexible filament is that the behavior of the chain of
the free magnetic particles in the range of the parameters,
where the magnetic interaction between them is attractive,
can be described by the model of semiflexible filament �9�.
Another important issue addressed, when considering the be-
havior of the magnetic semiflexible filaments in an ac mag-
netic field, consists in the possibility of the existence of sev-
eral regimes of stationary oscillations. Here we show by the
calculation of the Floquet coefficients and numerical simula-
tion that two distinct stationary regimes of the oscillation of
the filament are possible: one with the perpendicular orien-
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tation of the filament and oscillations of its tips in phase and
another where the body of the filament is parallel to the
direction of the applied field but its tips are oscillating in
antiphase.

In Sec. II we define our model. There a linear stability
analysis is carried out and the existence of the localized
boundary modes is illustrated. In Sec. III numerical results of
the simulation of the magnetized filament in an ac field are
given. The dependence of the amplitude of the filament body
orientation angle on the frequency of the ac magnetic field is
found. It is verified numerically that in a some range of the
parameters two different stationary regimes of the oscillation
of the filament—S like and U like—exist. In Sec. IV the
model is generalized to consider the dynamics of the free
magnetic particle chains floating on the surface of the liquid.
It is shown that the mean magnetic energy of the filament in
dependence on its length has a minimum, the position of
which depends on the frequency of the ac field. The stream-
ing velocity induced by the oscillating tips of the magnetic
filaments is estimated in Sec. V.

II. MODEL

Let us consider a spontaneously magnetized filament with
the magnetization per unit length M. The shape of the fila-
ment with a curvature elasticity constant C is described by its
tangent angle � with a respect to the x axis along which an
ac magnetic field H cos �t is applied �Fig. 1�. Normal and
FIG. 1. Picture of a magnetic filament.
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tangential components of the stress F� in the filament are
given by �4,6�

Fn = C� 1

R
�

,l
+ MH cos �t sin � , �1�

Ft = − � C

2R2 + �� . �2�

Here R is the radius of the curvature of the center line of the
filament connected with the tangent t� and the normal n� ac-
cording to the Frenet equation dt�

dl =− 1
Rn� . � characterizes the

tension in the filament and is determined from the condition
of inextensibility. Partial derivative is denoted by sub-
script,¼.

The motion of the filament is considered in the Rouse
approximation when the hydrodynamic interaction between
its different parts is neglected and the velocity of its material
point v� is

v� =
1

�
K� ,

where �=4�� / �ln�L /a�+c� �� is the viscosity of a liquid, c
is the constant of order 1�, l is the contour length along the

filament, K� = dF�

dl , 2L is the length of the filament, and a is the
radius of its cross section.

With respect to the Rouse approximation we should re-
mark that due to the mutual influence of the elements of the
filament the hydrodynamic drag coefficients along the fila-
ment �� and perpendicular to it �� are different ��� /�� �2�
�10�. Due to this, in general, the velocity of the filament
should be expressed as follows:

vn =
1

��

Kn, vt =
1

��

Kt.

In the case of small deformations when the tangential motion
of the filament is negligible �11� the dynamics is determined
by the drag coefficient ��	�. The situation is less trivial if
the nonlinear effects are important. In some cases—for ex-
ample, at the motion of the filament in the rotating magnetic
field �12�—the account for the anisotropy of hydrodynamic
drag coefficients introduces only some quantitative differ-
ences in comparison with the isotropic case; for example, the
critical frequency for the transition to the nonsynchronous
regime in the case �� /�� =2 is diminished by 50% �13�. Nev-
ertheless, the anisotropy of the hydrodynamic drag does not
introduce any qualitative differences in this case. A real situ-
ation where the anisotropy of the hydrodynamic drag is es-
sential is the self-propulsion of the flexible filament in an ac
magnetic field �3,4,14� when the symmetry between its tips
is broken. In this case the self-propelling force is zero if there
is no anisotropy of hydrodynamic drag.

The situation with the hydrodynamic drag coefficients is
much less clear for the case of the filaments floating on the
surface of the liquid. We are aware of the calculations of the
drag coefficients of the filaments immersed in the mem-
branes �15� but only for the case when their motion is in the

plane of the interface. Nevertheless, for the case considered
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here of the magnetic particle chains floating on the surface of
the liquid and oscillating in the vertical magnetic field �8� the
drag coefficient for the motion of the filament perpendicular
to the interface is essential. Its calculation could be a formi-
dable problem. At the present moment for the estimates we
use its value for the filament in infinite volume of liquid. We
hope to improve in this part our estimates in the future. What
concerns the anisotropy of the drag coefficients for the fer-
romagnetic filaments we suppose to take it into account
when their self-propulsion in an ac field will be considered.
This very intriguing problem is pending for future publica-
tions.

To put the equations for the tangent angle and tension �
in dimensionless form the following scales are introduced:
time �=�L4 /C, tension C /L2, and length L. As a result the
equations in dimensionless form read �the tilde further is
omitted�

�,t = − �,llll −
1

2
��,l

3�,l − ���,l�,l + Cm�sin ��,llcos �t − �,l�,l

− ��,l�2Cm sin� cos �t , �3�

�,l
2� − �,ll = − �,l��,lll +

1

2
��,l�3� + Cm cos �t�,l�sin ��,l

+ Cm cos �t��,lsin ��,l. �4�

Here Cm= MHL2

C is the magnetoelastic number and � charac-
terizes the ratio of the elastic relaxation time and the period
of the field. Boundary conditions correspond to the free and
unclamped ends of the filament:


�,l
l=−1,1 = 0,


�
l=−1,1 = 0,

��,ll − Cm cos �t sin ��
l=−1,1 = 0.

A. Linear stability

The nonlinear dynamics of the filament in an ac magnetic
field arises due to instability of the filament at the phase of
magnetic field when it is directed opposite to the magnetiza-
tion of the filament. In the case when the magnetic field is
constant and opposite to the direction of the magnetization of
the filament, its linear stability analysis can be carried out in
detail. The linear stability problem reads

�,t = − �,llll − Cm �,ll, �5�


�,l
l=−1,1 = 0,
��,ll + Cm ��
l=−1,1 = 0. �6�

Looking for the solution

� = e�tz�l� = e�tei	l,

we find
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	2 =
Cm ± �Cm2 − 4�

2
.

Even and odd modes of the filament deformation are ana-
lyzed separately.

Introducing


1 =�1 + �1 − 4�/Cm2

2

and


2 =�1 − �1 − 4�/Cm2

2
,

the boundary conditions �6� for the even mode,

z = A cos��Cm 
1l� + B cos��Cm 
2l� ,

give the dispersion relation


1�
2
2 − 1�sin��Cm 
1�cos��Cm 
2�

= 
2�
1
2 − 1�cos��Cm 
1�sin��Cm 
2� . �7�

Equation �7� for the growth increment � has interesting prop-
erties. At Cm�0 it has no positive solutions, which means
that all perturbations are decaying. It has n solutions with
0�4� /Cm2�1 at Cmceven

�n+1��Cm�Cmceven

�n� with Cmceven

�n�

=n2�2, and there is one solution with 4� /Cm2�1 for all
Cm.

Cmceven

�n� defines the critical magnetoelastic number at
which the nth deformation mode of the filament is neutral.
Mode n=0 corresponds to the rotation of the filament as a
rigid rod. The increment of the growth of this mode corre-
sponds to the solution of Eq. �7� with 4� /Cm2�1. As Cm
increases 4� /Cm2 of this mode in a nonmonotonous way
approaches 4 as is shown in Fig. 2 by a dashed line.

The odd mode for the tangent angle is considered in the
same way. Taking

z = A sin��Cm 
1l� + B sin��Cm 
2l� ,

the boundary conditions �6� give the dispersion equation

FIG. 2. Increments of the first two modes of the filament
deformation.
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1�
2
2 − 1�cos��Cm 
1�sin��Cm 
2�

= 
2�
1
2 − 1�cos��Cm 
2�sin��Cm 
1� . �8�

The properties of the solutions of Eq. �8� are the following. If
Cmcodd

�n+1��Cm�Cmcodd

�n� with Cmcodd

�n� = �� /2�2�2n+1�2 and
Cm�Cm*, there are n solutions with 0�4� /Cm2�1.
Above the critical value of Cm*=2.597 there is one solution
with 4� /Cm2�1, which corresponds to the eigenvalue of
the first odd mode �n=1�, and �n−1� solutions with 0
�4� /Cm2�1. Cm* can be found by the solution of the
problem �5� and �6� in the case 4� /Cm2=1. Then 
1=
2
=
 and the solution of the problem �5� and �6� reads

z = A sin 
l + Bl cos 
l ,

where 
=�Cm*/2.
The solvability condition of the set of algebraic equations

arising due to boundary conditions �6� is the following


�Cm* − 
2� = �
2 + Cm*�sin 
 cos 
 ,

which gives Cm*�2.597. At Cm�2.597 the solution for the
eigenvalue of the first odd mode appears at 4� /Cm2�1.
This solution with the increase of Cm in a non-monotonous
way, as shown by a solid line in Fig. 2, approaches
4� /Cm2=4. The shapes of the odd and even modes obtained
by integration of y,l=z and corresponding to 4� /Cm2�1 are
shown in Figs. 3 and 4 for a large Cm value equal to 200.

In the limit Cm→ there is an infinite series of modes
with 4� /Cm2�1 and two modes—one even and one odd-

FIG. 3. First even mode of the filament deformation.
Cm=200.

FIG. 4. First odd mode of the filament deformation.

Cm=200.
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with 4� /Cm2=4, which cannot be obtained from the con-
tinuum limit of the infinite filament since the spectrum of the
increments corresponding to the periodic modes eiql,

� = − q4 + Cm q2,

is limited from the above by Cm2/4. Two separate modes
correspond to the modes of the deformation localized near
tips of a filament. This can be illustrated considering semi-
infinite filaments with l� �− ,0� and boundary conditions at
its right end:

�dz

dl
�

l=0
= 0, �9�

��d2z

dl2 + Cm z��
l=0

= 0. �10�

The decaying at the l→− solution of Eq. �5� at �=e�tz�l�
reads

z = Ae�Cm 
1l + Be�Cm 
2l, �11�

where


1 = − i�1 + �1 − 4�/Cm2

2

and


2 = i�1 − �1 − 4�/Cm2

2
,

and according to boundary conditions �9� and �10�,


1
2 = 1. �12�

From the dispersion relation �12� we see that the growth
increment of the localized boundary deformation modes sat-
isfies � /Cm2=1, which corresponds to the solution of the
dispersion equations �7� and �8� for the even and odd modes
with the largest growth increments in the limit of large Cm.

In Fig. 5 for one-half of the filament the comparison of
the localized boundary mode �11� with odd mode at Cm
=50 is carried out. We see that the behavior of both is close
at this value of magnetoelastic number. The even or odd

FIG. 5. Localized boundary mode �dashed line� and first odd
mode of the filament deformation �solid line�. Cm=50.
modes of the deformation of the filament with finite length
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with 4� /Cm2�1 are close to the symmetric or antisymmet-
ric combination of the localized boundary modes. Since they
have the largest increments—namely, the localized boundary
modes—they are responsible for the behavior of the fila-
ments described below.

It is interesting to note that analysis of the growth incre-
ments for the deformation modes of spontaneously magne-
tized filaments in the field oriented opposite to the magneti-
zation is close to that of superparamagnetic filaments under
the action of the perpendicular field. Such an analysis based
on the equations of motion of the superparamagnetic fila-
ments �6� is carried in �16,17�, where critical values of the
magnetoelastic number corresponding to the neutral defor-
mation modes �16� and their growth increments �17� are
found. These results show that the stability analysis in both
cases is the same if for the magnetoelastic number the sub-
stitution Cm→2 Cm is carried out.

B. Floquet analysis

According to the linear stability analysis, which shows the
growth of different deformation modes of the filament, when
the direction of its magnetization is opposite to the external
field, we should expect the development of the deformation
of the filament in an ac field, when direction of the field
periodically changes between the directions along the mag-
netization and opposite to it. The nonmonotonous depen-
dence of the growth increments of two localized modes on
Cm shown in Fig. 2 indicates that in dependence on the Cm
value and initial conditions in some range of the parameters
the even mode of the filament deformation will be preferred
but for some other odd mode. Since the eigenfunctions of the
problem for positive and negative Cm values are different,
the direct calculation of the total growth of the modes even
for the steplike switching of a field from positive to negative
values is not simple. Due to this, we have calculated the
growth factors for the modes of the filament deformation
numerically. The numerical calculation results show that in
an ac magnetic field only even and odd localized modes are
surviving. The slope of the dependence of the growth factors
on Cm starts to increase at Cm/���1. The parameter
Cm/�� quite naturally appears at the scaling analysis of the
dynamics of the filament �see Sec. III�. Modes corresponding
in the limit of infinite filament to the continuous spectrum
are decaying for all values of Cm. The growth factors �F,
which describe the increase of the deformation mode per
period of the field according to yT=�Fy0, for several repre-
sentative values of � are shown in Figs. 6–8. We see that in
dependence on the Cm value the most fast growing could be
the even or odd localized mode. For small � the even mode
prevails for all values of the Cm number �Fig. 6�. At large
Cm and � values the growth factors for both modes become
practically equal �Fig. 8�. In Figs. 6–8 we show the growth
factors for a limited range of the magnetoelastic number due
to the limited validity of the linear stability analysis.

C. Time averaging

In the case when the frequency of an ac field is enough
large the behavior of the even mode in the nonlinear regime
-4
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can be considered on the basis of the time-averaging proce-
dure. In this case we can consider the small deviations of the
shape of the filament from the straight configuration charac-
terized by its orientation angle 	�t� with the direction of an

ac field �Fig. 1�. Representing � as 	+ �̃ and linearizing with

the respect to �̃ �the tilde further is omitted� we obtain the
following equation:

	,t + �,t = − �,llll + Cm cos �t cos 	�,ll

at boundary conditions

�,l
l=−1,1 = 0,

�,ll
l=−1,1 = Cmcos �t sin 	 + Cm cos �t cos 	�
l=−1,1.

The tangent angle perturbation can be decomposed into a fast
oscillating part �0 and a slowly varying part w, where �0 is
a solution of the problem considered in �7�:

�0,t = − �0,llll, �13�

�0,ll
l=−1,1 = Cm cos �t sin 	 , �14�

�0,l
l=−1,1 = 0. �15�

The solution of the problem �13�–�15� can be put in the form
�7�

FIG. 6. Growth factor of even �dashed line� and odd �solid line�
modes in an ac field in dependence on Cm. �=200.

FIG. 7. Growth factor of even �dashed line� and odd �solid line�

modes in an ac field in dependence on Cm. �=800.
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�0 = − 8 Cm sin 	��1,l�l�cos �t − �2,l�l�sin �t� , �16�

where �1,2�l� are known functions. For the slow variable af-
ter averaging w�=�0

2�/�w dt and neglecting its variation dur-
ing the period of the field 2� /� we have the equation

	,t = − w�,llll − 2 Cm2sin 2	�1,lll, �17�

w�,l
l=−1,1 = 0, �18�

w�,ll
l=−1,1 = − 2 Cm2sin 2	�1,l
l=−1,1. �19�

From the existence of the solution of the problem
�17�–�19� we obtain the equation for the orientation angle 	:

d	

dt
= 3 Cm2sin 2	�1, �20�

here, �1=Re �, where

� = 2
�cosh k − 1�sin k + �1 − cos k�sinh k

k3�cosh k cos k − 1�

and k=2�1/4e−i�/8.
Equation �20� has a simple physical meaning. Since the

averaged per period energy of the filament can be written as

E = − � 1

2
� M cos�	 + ��H cos �t dl�

� − 2
C

L
Cm2sin2	�1,

then the equation of the motion of the filament with the
rotational drag coefficient 2�L3

3 reads

2�L3

3

d	

dt
= −

�E

�	
. �21�

Equation �21� put in dimensionless form coincides with Eq.
�20�.

Since �1�0 �7�, then Eq. �20� shows that in an ac mag-
netic field of enough high frequency the angle 	 evolves to
the value � /2. This phenomenon has the following physical
explanation. For the spontaneously magnetized filament its
straight configuration along the direction of an ac magnetic

FIG. 8. Growth factor of even �dashed line� and odd �solid line�
modes in an ac field in dependence on Cm. �=5000.
field during the half period when the directions of the mag-
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netization of the filament and the field are opposite is ener-
getically disadvantageous. The increase of the magnetic en-
ergy for this orientation of the field completely compensates
its decrease during the second half-period, when the magne-
tization and field are in the same direction. Therefore it turns
out from the energetical point of view advantageous to have
the filament in a direction perpendicular to the field when the
magnetic energy of the filament is diminishing for each half-
period by the bending of the ends of the filament.

III. DYNAMICS OF FILAMENT IN AN ac MAGNETIC
FIELD

A. Scaling laws

The classification of the dynamical regimes of magnetized
filament in an ac magnetic field is possible by scaling argu-
ments. In �18,19� the deformation of the semi-infinite fila-
ment under the action of the transversal force Fa applied at
its end is considered. The equation for the small displace-
ment y of the filament reads

y,t = − y,llll + Cm y,ll �22�

at boundary conditions

y,ll
l=0 = 0,

y,lll
l=0 = Cm y,ll
l=0 + Fa �23�

and initial condition y
t=0=0. It is easy to see that the solution
of the problem for y�0, t� written in dimensional variables
according to the scalings introduced above is

y�0,t� =
L3Fa

C Cm3/2 f�Cm2tC

�L4 � .

In the limit of large t, which is equivalent to large Cm, the
solution does not depend on the curvature elasticity. It means
that for large x f�x��x1/2 and the following scaling law is
valid �7,18,19�:

y�0,t� �
Fa

�MH�1/2

t1/2

�1/2 .

In this case, since the force on the tip of the filament is due
to the magnetic torque MH, the magnetic energy Em of the
deformed filament MHy�0, t� scales as

�MH�3/2t1/2

�1/2 ,

which according to the scales introduced above gives

Em �
C

L
Cm3/2� t

�
�1/2

.

Taking as the characteristic time scale the period of the ex-
ternal field we obtain

Em �
C

L

Cm3/2

����1/2 .

In the case of small Cm number or, what is equivalent, to

short time intervals the deformation of the filament does not

051503
depend on the Cm number. Thus at small x, f�x��x3/4 and

y�0,t� �
Fa

C
� tC

�
�3/4

. �24�

In this case for the scaling of the magnetic energy we have

Em �
C

L
Cm2� t

�
�3/4

.

Taking as the characteristic time scale the period of the field
in this case the characteristic magnetic energy reads

Em �
C

L

Cm2

����3/4 .

It is the characteristic value of the energy determining the
evolution of the mean orientation angle of the filament as
obtained by the time averaging for the high frequencies of an
ac magnetic field. We see the crossover of the dependence of
the characteristic magnetic energy on the frequency with its
increase from ����−1/2 to ����−3/4. The characteristic cross-
over frequency �* is determined by Cm/ ��*��1/2�1. It has
simple physical meaning. The scaling law t3/4 for the dis-
placement of the tip of filament corresponds to the balance of
the external force Fa by the restoring force due to elastic
deformations, which during the time t penetrates through the
distance Le��Ct /��1/4. Force balance Cy�0, t� /Le

3=Fa gives
the relation �24�. The characteristic magnetic deformation
length is determined in similar way as Lm= �MHt /��1/2. We
see that in the high-frequency regime Le�Lm and the defor-
mation is determined by the elastic deformation forces. Com-
paring Le and Lm, for the characteristic crossover frequency
we obtain ��*��1/2=Cm.

B. Numerical simulation results

Details of the dynamics of the magnetic filament in an ac
magnetic field can be studied by numerical solution of Eqs.
�3� and �4�. The algorithm of the numerical solution is de-
scribed in �6�. The boundary conditions correspond to the
free and unclamped ends. As follows from the Floquet analy-
sis in Sec. II there are two deformation modes growing under
the action of an ac magnetic field. Their development is de-
termined by the initial conditions—even or odd. In this sec-
tion we illustrate the behavior of these modes in a nonlinear
regime. The dynamics of the filament for the steady even
oscillatory state for one period of oscillation is shown in

FIG. 9. Steady oscillation regime around the perpendicular di-
rection to the field at Cm=10, �=62.83. Configurations for one

period with time step 1/100 are shown.
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Figs. 9–11. We see that in a steady case the filament oscil-
lates around its mean orientation perpendicular to the field
direction. At very high frequencies of an ac magnetic field
the filament is practically straight and only its tips are oscil-
lating with the frequency of the field as is illustrated in Fig.
11. It should be remarked that if, for example, in the case
shown in Fig. 11 odd initial conditions are chosen the U-like
steady oscillation regime is established, which is in agree-
ment with our analysis of the growth factors. The dynamics
of the establishment of the steady state for the set of the
parameters corresponding to Fig. 10 is shown in Fig. 12. To
compare the dynamics of the establishment of the steady
state with the predictions of Eq. �20� the tangent angle in the
middle of the filament is numerically averaged per period. It
is shown in dependence on dimensionless time at Cm=10
and �=188.496 in Fig. 13. We see that the behavior of the
averaged per period tangent angle in the center of the fila-
ment agrees well with the given by the solution of Eq. �20�:

	 = arctan�tan 	0exp�6 Cm2�1�t� . �25�

Here 6 Cm2�1 is 1.755, obtained by the fit value of the co-
efficient, which corresponds reasonably well to the value
1.881 obtained according to the theoretical value of the mag-
netic susceptibility given in �7�. The fit for the same fre-
quency at Cm=5 in the time interval t� �6;17� gives
6 Cm2�1=0.493. The theoretical value obtained according to
�7� in this case is 0.470. Some discrepancy of the numerical
and the theoretical values for the parameter 6 Cm2�1 may be
due to the fact that values of the parameter Cm/�� �0.73 and
0.36�, which determines the validity of the time averaging
approach, are not small enough. Higher-order terms for the
time-averaged equations of the relaxation dynamics of the
filament will be considered in the another publication. The
oscillation amplitude of the tangent angle at the filament cen-
ter in dependence on the frequency for Cm=10 is shown in
Fig. 14.

In the range of parameters where according to the Floquet
analysis the growth of the odd deformation mode is possible
at the odd initial conditions the U-like steady oscillation re-
gime is established. This is illustrated in Fig. 15 where the

FIG. 10. Steady oscillation regime around the direction perpen-
dicular to the field at Cm=10, �=188.496. Configurations for one
period with time step 1/300 are shown.

FIG. 11. Steady oscillation regime around the direction perpen-
dicular to the field at Cm=170, �=20195.95. Configurations for

one period with time step 1/22500 are shown.

051503
oscillation of the filament for period in U-like steady state is
shown. As initial perturbation of the filament ��l�=5
�10−3f�l� in this case is taken, where the function f�l� is
defined by

f�l� = − 2�l + 1�exp�− 20�l + 1�2� − 2�l − 1�exp�− 20�l − 1�2� .

It should be remarked that if the frequency of an ac field is
low enough, then at odd initial filament tangent angle pertur-
bations a strongly bent intermediate state can form as shown
in Fig. 16 for Cm=10 and �=10. As an initial configuration
in this case �=0.1f�l� has been chosen. In the agreement
with the Floquet analysis in the longer period of time for the

FIG. 12. Establishment of the steady oscillation regime around
the direction perpendicular to the field at Cm=10, �=188.496.
Configurations are shown for t= t0, t0+15T, t0+30T, t0+45T, t0

+60T, t0+75T, t0+195T, where t0=0.6489 and the period of the
field T=1/30.

FIG. 13. Relaxation dynamics of the angle 	 at Cm=10, �
=188.496. Circles: numerical data. Solid line: fit by the theoretical

2
dependence �20� at 6Cm �1=1.755.
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parameters corresponding to Fig. 16 the even shape of the
filament, due to the presence of the some numerical noise,
develops since only it has a growth factor bigger than 1. The
formation of a strongly bent intermediate state, as shown in
Fig. 16, if the magnetic interaction between the tips is
switched on, would presumably lead to the formation of
rings of spontaneously magnetized filaments. The possibility
of ring formation due to the balance of the elastic forces and
the interaction between the tips of the filament is considered
in �4�. Although the formation of rings is energetically pos-
sible if the filaments are long enough, nevertheless, how they
overcome the energetical barrier to form the ring remains
unclear yet. The results obtained here show the possibility to
produce the rings by using an ac magnetic field.

Thus the numerical results show that depending on the
initial conditions and the values of the parameters S-like or
U-like oscillations of the filament corresponding to the local-
ized modes of the filament deformation can be established.
Direct experimental investigations of these interesting phe-
nomena at the present moment are absent, although there are
some papers �8,20� considering systems close to those con-
sidered in this work.

In �20� the Fe colloid containing long chains of ferropar-
ticles is obtained and its magnetic susceptibility in depen-
dence on the frequency of the ac magnetic field is explored.
In �7� it was shown that experimental data obtained in �20�
correspond well to the model of the semiflexible spontane-
ously magnetized filament. In �8� the ensemble of the Ni
90−�m-size particles floating on the surface of the liquid is
explored and it is observed that in an ac magnetic field the
particles are chaining. This means that magnetic particle fila-
ments are in the plane perpendicular to an ac field as pre-
dicted by our model.

Interesting is the fact that vortical surface flows are ex-
cited �8�, which may be reasonably explained as arising due
to oscillating tips of the filaments. The main physical differ-

FIG. 14. Amplitude of tangent-angle steady oscillation at Cm
=10.

FIG. 15. Steady oscillation regime of the odd mode at Cm=25,
�=376.991. Configurations for one period with time step 1/600 are

shown.

051503
ence between the model considered above and experimental
realization of the chaining of the magnetic particles in the
plane perpendicular to the field consists in the additional
elasticity of the filaments due to the capillary forces. The
modified model accounting for this additional elasticity is
considered in the next sections of this work. It turns out that
modified in a such way the model is sufficient to predict the
length of chains formed under the action of an ac field,
which depends on the frequency of the field, and to obtain a
reasonable estimate for the streaming velocity of the liquid.

IV. MAGNETIC CHAINS ON THE SURFACE OF THE
LIQUID

As a model for the chain of magnetic particles, floating on
the surface of the liquid, let us take the cylindrical particle
with the radius of the cross section R and a density �. Wet-
ting angle of the surface is �-�S. At the capillary equilibrium
the center of the particle is at the distance yc above the sur-
face of a liquid:

yc = R cos��S + �� − �2a sin��/2� ,

where � is the tangent angle of the liquid surface, which it
makes with the horizontal direction at the contact line, but
a=�2� /�lg is the capillary length of a liquid with a density
�l and a surface tension �, but g is the acceleration of a free
fall.

Force F per unit length acting on the particle is

F = 2� sin � − ��R2g .

The equilibrium position is given by the condition F=0. The
stiffness of the interface may be then estimated as k
=−dF /dyc
F=0 which gives

k =
2�2� cos �

�2R sin��S + �� + a cos��/2�
.

If the particle is enough small �R�a�, then ��0 and a
simple relation for the stiffness of the filament follows: k
=2�2� /a. Its value in the case of water is �566 dyn/cm2.
The equation for the small deformations of the filament float-
ing on the surface of the liquid reads

�y,t = − Cy,llll − ky . �26�

The boundary conditions correspond to the free and
unclamped ends

y,ll
l=0,L = 0,

FIG. 16. Strongly bent intermediate state of the filament at
Cm=10, �=10. Configurations for times t0 ,2t0 ,3t0 ,4t0 ,5t0 ,6t0 ,
7t0 ,8t0 ,10t0 �t0=1/90� are shown.
Cy,lll
l=0,L = − M H cos �t .
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In the case when the term due to the restoring capillary
force is absent a complex magnetic susceptibility of the fila-
ment is calculated in �7�. In the present case the complex
susceptibility reads

� = −
M2L3

C

2

�̃3�cosh �̃ cos �̃ − 1�

���cos �̃ − 1�sinh �̃ − �cosh �̃ − 1�sin �̃� ,

where

�̃ = ����L4

C
�2

+ � kL4

C
�2�1/8

e−i��/8+
/4�

and


 = arctan� k

��
� .

The mean per period magnetic energy of the filament reads

E = −
1

4
H2Re��� .

The expression obtained for the magnetic susceptibility has
interesting features since it shows a nonmonotonous depen-
dence of the magnetic energy on the length of the filament.
Introducing the characteristic length L*= �C /k�1/4 and char-
acteristic frequency k /�=�* the dependence of the energy of
the filament on its length is determined by

E = −
1

2

M2H2

C
L*

3Re�f��/�*,L/L*�� ,

where

f = −
1

�3�cosh� L

L*
��cos� L

L*
�� − 1�

� ��cos� L

L*
�� − 1�sinh� L

L*
��

− �cosh� L

L*
�� − 1�sin� L

L*
���

and

� = ���/�*�2 + 1�1/8exp − i��/8 + 
/4� .

The dependence of Re f on L /L* for several values of � /�*
is shown in Fig. 17. We see the characteristic maxima at
finite length of the filament.

These maxima presumably should determine the length of
the magnetic particle chains formed on the surface of the
liquid in the vertical ac magnetic field. Estimating the curva-
ture elasticity constant of the chain as C= m2

2d2 �4� for the
characteristic length L* and using the estimate of the elastic
constant k=500 dyn/cm2 obtained above, the value of the
magnetic moment of the particle, m=2�10−4 emu, which
corresponds to a saturation magnetization of Ni particle and
its diameter d=100 �m, we have L*=0.25 mm. This accord-

ing to the data in Fig. 17 corresponds at � /�*�1 to a chain

051503
length 2 mm. This value is reasonable from the point of view
of the experiment �8�.

V. STREAMING EXCITED BY OSCILLATING MAGNETIC
FILAMENTS

Oscillating magnetic filaments create force on the liquid
which causes its streaming. The force per unit length of the
filament with the mean orientation along x axis is expressed
as follows �n� is the normal to the filament�

fx = �Cy,llll + ky�nx.

Since nx=−y,l then the mean per period total force acting on
a liquid is

Fx = − �� �Cy,llll + ky�y,ldl� .

It can be calculated solving Eq. �26� at boundary conditions
corresponding to the free and unclamped end of the semi-
infinite filament �l� �− ,0��:

y,ll
l=0 = 0,

− Cy,lll
l=0 − MH exp i�t = 0. �27�

The solution of the problem �26� and �27� reads

y = v�l�ei�t. �28�

Here

v = A exp 
1l + B exp 
2l ,


1 = � k

C
�1/4�1 + � �

�*
�2�1/8

ei��+��/4,


2 = � k

C
�1/4�1 + � �

�*
�2�1/8

ei��−��/4,

� = arctan� �

�
�

FIG. 17. Magnetic susceptibility of magnetic filament in depen-
dence on its length for several values of the frequency of the ac
field �� /�*=2,3 ,4 ,5 with the frequency increasing from the upper
to the lower curve�.
*
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and

A = −
MH

C

1

�
1 − 
2�
1


1
2 ,

B =
MH

C

1

�
1 − 
2�
1


2
2 . �29�

For the mean per period force acting on the liquid after
integration and time averaging we obtain

Fx =
1

2
MH Re�vl�0�� −

k

4

v�0�
2

= −
�MH�2

2�kC�1/2�1 + ��/�*�2�3/4

��1 − cos��/2��1 + ��/�*�2�1/2� . �30�

This force causes the streaming of the liquid along the fila-
ment in the direction of its tip. The streaming velocity can be
estimated using the fundamental solution of the Stokes equa-
tion for the semispace. For the velocity of the liquid on its
surface at y=0, due to the unit force applied at the point �0,
0, 0� in the x-axis direction, it gives

vx�x,z� =
1

4��
� 1

�x2 + z2�1/2 +
x2

�x2 + z2�3/2� ,

vz�x,z� =
1

4��

xz

�x2 + z2�3/2 .

For the streaming velocity induced near the tip of the fila-
ment with the radius of the cross section a lying along the
x-axis this gives

vx�0,a� =
1

4��
�

−L**

0

fx�x��� 1

�x�2 + a2�1/2 +
x�2

�x�2 + a2�3/2�dx�.

�31�

Here L**= � k
C �−1/4�1+ � �

�*
�2�−1/8 is the characteristic elastic

deformation penetration length given by the solution of Eq.
�26�.

The asymptotics of the relation �31� at a→0 gives

vx�0,a� �
fx�0�
2��

ln
L**

a
.

Using the relation �30� and estimating fx�0� from fx�0�L**

=Fx we obtain the following estimate for the streaming ve-
locity induced by the oscillating tip of the magnetized fila-
ment in an ac magnetic field:

vx�0,a� =
�MH�2

2C
L**F��/�*�

1

2��
ln

L**

a
. �32�

Here
051503-
F��/�*� = −
1

�1 + ��/�*�2�1/2

��1 −
�1 + ��/�*�2�1/2�/�*

���/�*�2 + ��1 + ��/�*�2 − 1�2� .

�33�

The dependence F�� /�*� is shown in Fig. 18. We see that
the force acts in the direction of the tip of the filament. Tak-
ing for the estimate of the curvature elasticity constant C
= M2

2 �4� according to the relation �32� at H=102 Oe and
� /�*=0.1 for the streaming velocity we have 14 cm/sec.
For this estimate the value L*=0.25 mm giving a reasonable
optimal length of the chains is taken. The condition � /�*
=0.1 corresponds to the quite reasonable frequency of an ac
field about 60 Hz. Although these values are close to those
obtained in experiment �8�, our estimate is only illustrative
since at the present moment direct data on the stiffness of the
filament floating on the surface of the liquid and as well the
curvature elasticity of the filaments are absent. These issues
create interesting problems to be explored in the future.
Among them we should mention that the deformation of the
surface of the liquid induced by the moving contact line at
nonuniform deformation of the floating filament �21� could
be important.

In spite of some mismatch of quantitative estimates with
available experimental results �8� our model of the flexible
magnetic filament allows us obtain some insight into the
complex pattern formation phenomena of the ensemble of
magnetic particles in an ac magnetic field, explain such fea-
tures observed in experiment as the chain formation in the
plane perpendicular to the field, the existence of the optimal
length of the chains, which depends on the frequency of an
ac magnetic field, the streaming of the liquid caused by the
oscillating tips of magnetic filaments, and other cases.

In conclusion, we have developed a model for the nonlin-
ear dynamics of magnetized filaments in an ac magnetic
field. By a linear stability analysis we have found that the
behavior of the filament in an ac magnetic field is determined
by the localized boundary modes, which are separated from
the deformation modes of the continuum limit. By numerical
calculation of the Floquet coefficients it is shown that the

FIG. 18. Dependence of the dimensionless streaming velocity
on the frequency.
localized modes are responsible for the deformation of the
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filament in an ac magnetic field. Among different important
phenomena, which take place in an ac magnetic field, the
orientation of the filament in the direction perpendicular to
the field is found by the time-averaging approach and con-
firmed numerically. The numerical simulation results give

evidence of the possibility of ring formation by spontane-

�1999�.

051503-
ously magnetized filaments under the action of an ac mag-
netic field. It is illustrated that the properties of the magne-
tized filaments found may give the insight into the complex
pattern formation phenomena of the two-dimensional en-
sembles of the magnetic particles observed in the experi-

ments recently.
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